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ABSTRACT 

 As part of the Localized Aviation Model Output Statistics (MOS) Program, the Meteorological 

Development Laboratory is analyzing surface data reports on an hourly basis. The Bergthórsson-Cressman-

Döös-Glahn analysis program that is being used for gridding the MOS forecasts has been tailored to analyze 

surface observations. These analyses are available in the National Digital Guidance Database (NDGD) over 

the conterminous United States. This database is on the same grid as, and is interoperable with, the National 

Digital Forecast Database. It is desired to know the errors involved in these analyses. Whereas the actual 

errors are unknowable for several reasons, they can be estimated. On any given analysis, one would expect 

the error at a specific location to be a function of some knowable parameters, such as distances between the 

reporting locations and the grid points, the terrain roughness, the density of reporting locations, and the 

variability of the data values—all in the immediate vicinity. 

 We have made analyses of surface temperature and dewpoint over the conterminous United States every 

fifth hour for one year. On each analysis, 20 land stations and one water station were randomly withheld 

from the available data. For each withheld datum, the analysis value at that site was estimated by bilinear 

interpolation. The differences between these interpolated values and the actual observations were related to 

knowable parameters through least squares regression—one relationship for land and another for water—for 

each variable. These regression equations were then applied, respectively, to each land and water grid point 

for a specific hour. This produced an estimate of the error of the analysis for each grid point for that specific 

time. These grids of errors are, along with the analyses, available in the NDGD. This paper describes the 

process and shows the results. 

 
 

1. Introduction 

 Analyses of surface-based meteorological obser-
vations have many applications. Such analyses are part 
of the assessment of the synoptic situation necessary 
for weather forecasting; this is as true today as it was 
60 yr ago. The methods of analyses have, however, 
changed since then. In the mid 1950s, data were 
plotted by hand on maps and the analyses were 
performed by humans. Since then, various methods of 
automated analyses have been developed in concert 
with the development of the digital computer. 
Summarizing a mesoscale conference, Horel and 
Colman (2005) stated, “Thus, the NWS [National 
Weather Service] has an immediate and critical need 
to produce real-time and retrospective analyses at both 
a high spatial and temporal resolution in order to 
create the NDFD [National Digital Forecast Database] 

 
forecasts as well as to verify their accuracy.” In 
addition, they also stated that additional research will 
be needed on how to quantify and express to the end 
user the uncertainty implicit in any analysis approach. 
 Objective (i.e., computer produced) analyses of 

meteorological data were being considered even 

before 1950. One of the first objective techniques to 

appear was the least-squares fitting of a polynomial to 

the data over a fairly large area (Panofsky 1949). 

Although this was refined by Gilchrist and Cressman 

(1954) to fit the data over a small area and was 

actually used in early numerical weather prediction 

experiments, it never became widely used. George 

Cressman, who was the director of the Joint Numerical 

Weather Prediction Unit of the Weather Bureau, the 

forerunner of the National Meteorological Center (now 
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the National Centers for Environmental Prediction, 

NCEP), recognized the potential for a technique 

developed by Bergthórsson and Döös (1955), and put a 

version of that into operation for analyzing upper-air 

geopotential heights (Cressman 1959). This 

successive-correction technique consisted of making 

multiple passes over the data and correcting each grid 

point on each pass by the data in the immediate 

vicinity—immediate vicinity being defined by a radius 

of influence that was constant over the analysis area, 

but was decreased for successive passes. A very 

similar technique, basically differing only in the 

distance-weighting factor, was proposed by Barnes 

(1964) and has been used extensively. Barnes (1964) 

proposed his method be used with one or two passes. 

He suggested “…direct application of the scheme to 

obtain maximum detail in regions wherein the data 

densities vary considerably is not recommended.” 

Achtemeier (1989) suggested Barnes’ scheme be 

extended to three passes. 

 Other very sophisticated methods of analysis, now 

called data assimilation, have been developed and are 

in operation at national centers worldwide for 

providing initial conditions for numerical models (e.g., 

Kalnay 2003). These latter methods employ 

relationships among free atmospheric variables that 

are not as effective for use with variables observed at 

the earth’s surface, although they have been adapted 

for surface variables and are used for the real-time 

mesoscale analysis (RTMA; Pondeca and Manikin 

2009; Manikin and De Pondeca 2011) being run at 

NCEP. Numerical weather prediction centers in other 

countries have analysis systems tailored for their 

needs; for instance, Glowacki et al. (2012) presented a 

stage in the development of a system for Australia and 

reference other systems. 

 The method as used by Cressman has been used 

extensively in the Localized Aviation Model Output 

Statistics (MOS) Program (LAMP) and has been 

called the BCD method (see Glahn et al. 1985). As 

part of the Meteorological Development Laboratory’s 

support to the aviation community, and the Next 

Generation Air Traffic Control System Program in 

particular (see Ghirardelli and Glahn 2010, 2011), we 

have further developed BCD, which now is called 

BCDG, after the initials of the last names of the 

primary developers (Bergthórsson, Cressman, Döös, 

and Glahn). This method has been described by Glahn 

et al. (2009) for the analysis of MOS forecasts and has 

been adapted for analysis of surface observations. 

Although the basic BCDG method is described in 

Glahn et al. (2009), there were several changes and 

improvements necessary for analysis of observations. 

These are described in Im et al. (2010, 2011), Glahn 

and Im (2011), and Im and Glahn (2012). 

 Although a considerable amount of effort has been 

placed on analysis methods, a more modest effort has 

been put on estimating the analysis error associated 

with a particular method. Characteristically, errors 

associated with analysis schemes have been estimated 

with idealized data (e.g., a combination of sinusoidal 

waves) and/or upper-air data where the patterns are 

relatively smooth. Difficulties in making a good 

analysis and a good estimate of its error are evident by 

the exchanges between Fritsch (1971) and Glahn and 

McDonell (1971), Goodin et al. (1979, 1981) and 

Glahn (1981), and Smith and Leslie (1984) and Glahn 

(1987). The RTMA process (De Pondeca et al. 2011) 

includes an estimate of the analysis error—the method 

being specific to the analysis process. Myrick and 

Horel (2008) have studied the sensitivity of surface 

analyses to a particular type of observation. 

 If one is going to estimate analysis error, that error 

needs to be defined. One could be very interested in 

the location of fronts or other discontinuities, and not 

be overly concerned about nondescript areas. If such 

were the case, then a method that concentrated on that 

aspect would need to be defined. If one is concerned 

about making derivative calculations, then the the 

analysis method proposed by Achtemeier (1989) 

would be an option, with errors defined appropriately. 

Our use of the term “analysis error” is defined as a 

measure of the inability to recover the data on which 

the analysis is based from the gridded analysis by 

linear interpolation anywhere within the extent of the 

grid. The measure used is absolute error (AE). Even 

though the definition is in terms of values at data 

points (that is where the error can be measured), it 

represents the difference between the true value (the 

value that would have been observed) and the analysis 

at any point. Note that this does not address the 

possible errors in the observations except to the extent 

they manifest themselves in the analysis. 

 For an analysis algorithm such as BCDG, one can 

think of different ways of making such an estimate of 

the error. The simplest one is to interpolate into the 

completed analysis grid and compute the error at each 

data point. The average of these errors would be an 

overall measure of error. This has two undesirable 

attributes. First, the interpolated value itself has 

potential error. If the gridpoint representation of the 

data was perfect, one would still not, in general, 
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recover the value at the data point exactly by 

interpolation.
1
 That is, the analysis process is not 

reversible. However, interpolation from a regularly 

spaced grid to a random point is more exact than 

interpolating from randomly spaced points to a regular 

grid, especially when the data density relative to the 

grid spacing is uneven and/or sparse. This error of 

interpolation is unavoidable, although there are 

different methods of interpolation that could be used.
2
 

The second, and major, difficulty is that any good 

analysis process can fit the data points rather closely, 

but still be poor where the data are sparse; a 

calculation of error only at the data points may not 

well represent the error over the entire grid. In 

addition, this gives errors only at the data points, not at 

grid points. 

 To attempt to overcome the second difficulty, one 

could withhold a few data points when doing the 

analysis, then compute the AE only at those points. 

Then, the analysis would not be affected by the 

withheld points, and the AE would be a measure of the 

overall error at points on the grid between grid points 

where there were no data values. Although the analysis 

is deprived of those withheld data, this is acceptable 

provided the number of withheld points is a very small 

fraction of the total points. Withholding data for error 

estimation was used as early as 1962 by Thomasell 

(1962). By replication with the same data—and 

withholding different sets of points—one can estimate 

the mean absolute error (MAE) for a particular set of 

data. By performing analyses on many sets of data, 

with or without replication, one can estimate the MAE 

over that sample. But note that this is an overall error, 

and says nothing about the distribution of errors over 

the grid and its underlaying terrain. Tyndall and Horel 

(2013, p. 256) used the adjoint of a two-dimensional 

variational surface analysis to identify high-impact 

observations and reference several cross-validation 

experiments. 

                                                 
1
 Suppose an analytic function were defined that could be eval-

uated at any point in the analysis area. Knowing the gridpoint 

values does not equate to knowing the values between grid points. 

Interpolation to a point from gridpoint values will give an estimate 

that will not, in general, be the same as the analytic function 

evaluated at that point. 

2
 Biquadratic interpolation would work well in smoothly varying 

fields of data. Smooth fields could result from the data themselves 

not exhibiting much variablity, or the analysis process highly 

smoothing the data. For more variable data fields, bi-linear 

interpolation is probably best. 

 Forecasters who ask about analysis errors usually 

are concerned about their specific area of interest, 

which may or may not be in rugged terrain, near water 

bodies, or in data-sparse regions. This paper describes 

a process for generating an error map for a particular 

analysis and gives results for surface temperature and 

dewpoint over the conterminous United States 

(CONUS) on a 2.5-km grid. The grid is in relation to a 

Lambert conformal projection and is the one used in 

the NDFD (Glahn and Ruth 2003). Whereas the 

method is designed for BCDG, it could be used 

equally well for other analysis methods. 

 

2. The error estimation method 

 As stated previously, our measure of error is the 

difference between a data value and the value obtained 

from the gridpoint analyses at that point by linear 

interpolation. For a particular meteorological variable, 

we make analyses over many observation times, 

randomly withholding a very small percentage of the 

observations. A particular analysis over the CONUS 

and its immediate water surroundings will contain over 

10 000 observations. We withhold 20 land reports and 

one water report, and compute the AE for each 

location and analysis. These values become a 

predictand dataset for regression analysis. 

 For each of the withheld data points, we compute a 

set of predictors that might be related to the analysis 

errors. Then, two regression equations are computed 

by forward selection of predictors: one for land 

locations and one for water locations. The developed 

equations apply to observation points, but with certain 

assumptions they can be applied to each appropriate 

(land or water) grid point for a specific case—thereby 

giving a grid of estimated errors for that observation 

time. 

 

3. Description of predictors 

 There are several factors that may cause errors at 

specific locations, which are discussed below. In all, 

19 predictors were calculated; they are described and 

numbered in the following subsections, and 

summarized in Table 1. 

 

a. Data density 

 Obviously, if there are many data points relative to 

the spacing of the grid, the analysis will be better than 

if the data points are more sparse—all other things 
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Table 1. Definitions for nineteen potential predictors. Those 

marked with an asterisk were the only ones used for water. 

Predictors 912 are used for water, but the VCE is zero. One grid 

length equals 2.5 km. 

Predictor 

category 

Predictor 

No. 
Definition 

Within-grid 

lengths 

Data density 1* 
Distance to the 

closest station 
110 

Data density 2* 
Distance to the 2nd 
closest station 

110 

Data variability 3* Data variability 110 

Data variability 4* Data variability 90 

Data variability 5* Data variability 70 

Data variability 6* Data variability 54 

Data variability 7 

Data variability with 

application of the 

VCE 

110 

Data variability 8 Same as previous 90 

Data variability 9* 

Data variability with 
application of the 

VCE and use of the 

distance between 
stations weighted 

quadratically by the 

same weighting 
function used in the 

analysis 

110 

Data variability 10* Same as previous 90 

Data variability 11* Same as previous 70 

Data variability 12* Same as previous 54 

Terrain 

roughness 
13 Roughness 8 

Terrain 

roughness 
14 Roughness 4 

Terrain 

roughness 
15 Roughness 2 

Terrain 

roughness 
16 Roughness 1 

Data density and 

roughness 
17 

Absolute difference 

in elevation between 

the withheld station 
and its nearest 

neighbor 

110 

Data density and 

roughness 
18 Product of 17 and 1 110 

Data variability, 

roughness, and 
data density 

19* 

Absolute difference 

in value between the 
station value and its 
estimate from the 

closest station 

110 

 

being equal. We computed two predictors related to 

just data density, with respect to the grid spacing. They 

are: 
 

1. The number of grid distances from the 
withheld station to the closest station within 
110 grid lengths. 

2. The number of grid distances from the 
withheld station to the 2nd closest station 
within 110 grid lengths. 

 The choice of 110 grid lengths was based on the 

minimum data density so that the first predictor could 

always be computed. If the second could not be 

computed (i.e., there were not two stations within 110 

grid lengths of the withheld station), that case was 

omitted; this rarely happened. 

 

b. Data variability 

 When data values are very nearly the same over 

some small region, say within a few grid lengths at 

most, then (i) a gridpoint value should represent them 

very well, (ii) they should be highly recoverable, and 

(iii) the analysis error would be low. On the other 

hand, when there is high variability, one would not 

expect any particular value to be recoverable to a high 

degree of accuracy. Several potential predictors related 

to data density were computed as indicated below. 

 

3. The data variability within a circle with a 

radius of 110 grid lengths of the station. Data 

variability is defined as the mean absolute 

difference between the data value and the 

mean of the values within the circle. The 

withheld value itself is not included in the 

calculation of the mean. 

4. Same as 3, except within 90 grid lengths. 

5. Same as 3, except within 70 grid lengths. 

6. Same as 3, except within 54 grid lengths. 

7. Same as 3, except the vertical change with 

elevation (VCE) of the variable being analyzed 

between the withheld and the other stations is 

applied [the VCE is explained in Glahn et al. 

(2009), but because of its importance here, it 

is described in appendix A]. 

8. Same as 7, except within 90 grid lengths. 

9. Same as 7, except the distance between 

stations is weighted quadratically by the same 

weighting function used in the analysis (Glahn 

et al. 2009). 

10. Same as 9, except within 90 grid lengths. 

11. Same as 9, except within 70 grid lengths. 

12. Same as 9, except within 54 grid lengths. 

 

c. Roughness of terrain and other factors 

 The values of most surface variables are 

influenced by the height of the terrain. Several 

potential predictors were calculated; some of them also 

are related to factors discussed above. 

 



 

Glahn and Im NWA Journal of Operational Meteorology 30 July 2013 

ISSN 2325-6184, Vol. 1, No. 11 118 

13. Roughness calculated on the grid centered on 

the grid point closest to the station within a 

radius of 8 grid lengths. Roughness is defined 

as the mean absolute difference between the 

terrain height at the grid point and the mean of 

the surrounding heights. 

14. Same as 13, except within 4 grid lengths. 

15. Same as 13, except within 2 grid lengths. 

16. Same as 13, except within 1 grid length. 

17. Absolute difference in elevation between the 

withheld station and its closest neighbor 

(combines data density and roughness). 

18. Product of 17 and 1 (combines data density 

and roughness). 

19. Absolute difference between the withheld 

station value and the value estimated from the 

closest station after applying the VCE of the 

analyzed variable calculated at the closest 

station and with the elevation difference 

between the two (combines data density, 

roughness, and data variability). 

 

d. Other considerations 

 Land use also may affect analysis errors. For 

instance, as one goes from a grassy location to a sandy 

or rocky one, the value of the variable may change. 

We have not used predictors dealing with land use. It 

is likely any variation caused by land use is very 

localized, and is of a smaller scale than the analysis 

grid length. 

 In addition to there being no terrain roughness 

over water bodies, the different surface itself may 

cause a difference in the analysis error. As noted 

above, different relationships are developed for land 

and for water, so specific predictors are not necessary. 

 While the atmospheric stability and wind-flow 

characteristics undoubtedly can affect analysis error, 

most of these effects should be captured in the data 

variability and roughness of terrain. It also was desired 

to keep the analysis error estimation confined to the 

surface data themselves, so no other predictors were 

calculated. 

 

4. Computation of the predictand 

 The predictand, which is the absolute-error 

estimate at particular locations, is computed by 

making analyses over a large dataset, randomly 

withholding a few stations from each analysis, and 

finding the absolute difference between the withheld 

station’s value and the value interpolated from the 

analysis. [The method of random selection is 

explained in appendix B.] This gives an AE at each 

withheld data point for each analysis. Specifically, we 

withheld 20 land stations per analysis and one water 

station, the latter from either the ocean or Great Lakes’ 

buoys, or from observing points judged to be more 

representative of a water location than land.
3
 The total 

number of land stations per analysis was on the order 

of 10 000, so the percentage withheld was about 0.2%. 

The total number of water points was on the order of 

300 for temperature and 200 for dewpoint, so the 

percentage of withheld points was about 0.3 and 0.5%, 

respectively. Our sample consisted of every fifth hour 

for all days within a 1-yr period from 2100 UTC  

3 June 2009 to 2300 UTC 31 May 2010.
4
 

 

5. Computation of the predictors 

 The 19 potential predictors discussed above were 

computed for each withheld station. The predictors 

incorporate data density, terrain roughness, and data 

variability, and are summarized in Table 1. Predictors 

dealing with elevation differences are not computed 

for over water. The grid lengths quoted are for land; 

the grid lengths for water are double those for land. 

 

6. Results 

 One year of data was processed, and a regression 

equation was obtained for land and for water by 

screening the 19 predictors for land and 11 for water. 

The screening process consists of choosing predictors 

in order according to their additional reduction of 

variance (RV) of the predictand (Summerfield and 

Lubin 1951; Murphy and Katz 1985, chapter 8). The 

development sample size for land was 30 100 for 

temperature and 30 060 for dewpoint; the sample size 

for water was 1503 for temperature and 1508 for 

dewpoint. These values should be reasonably 

independent and furnish stable equations, especially 

for a small number of predictors. 

 It became apparent that the best predictor by far is 

19, which is the difference between the withheld 

station value and an estimate of it provided by its

                                                 
3
 Some coastal stations, while not over water, may be more repre-

sentative of water than land. See Im and Glahn (2012) for a 

discussion of this issue. 

4
 Using every fifth hour of the hourly sequence reduces redun-

dancy, guarantees an even distribution of hours, and provides an 

adequate sample for stable regresson equations. 
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Table 2. The predictor variable means and standard deviations in °F (divide by 1.8 to get °C), and correlations with the predictand, for 

temperature and dewpoint over land. 

Predictor No. 

(see Table 1) 

Temperature Dewpoint 

Mean Std. Dev. Correlation Mean Std. Dev. Correlation 

1 8.49 6.64 0.049 9.11 7.22 0.055 

2 12.70 7.82 0.054 13.66 8.30 0.057 

3 4.64 2.10 0.158 4.53 2.06 0.232 

4 4.33 2.04 0.170 4.18 1.95 0.242 

5 3.97 1.98 0.182 3.81 1.86 0.255 

6 3.64 1.96 0.180 3.47 1.78 0.253 

7 3.42 1.67 0.156 3.60 1.74 0.218 

8 3.10 1.49 0.173 3.29 1.60 0.234 

9 1.19 0.61 0.160 1.27 0.65 0.216 

10 1.08 0.55 0.172 1.16 0.59 0.222 

11 0.98 0.52 0.180 1.06 0.55 0.223 

12 0.91 0.53 0.179 0.99 0.56 0.210 

13 78.31 95.46 0.146 76.82 93.54 0.155 

14 54.23 72.60 0.148 52.54 70.09 0.149 

15 36.31 52.86 0.150 34.94 51.35 0.138 

16 26.06 41.30 0.142 24.96 40.81 0.123 

17 128.48 227.48 0.149 125.75 221.06 0.140 

18 1310.01 2817.16 0.118 1483.99 3385.04 0.121 

19 2.97 4.36 0.726 3.36 4.23 0.655 

Predictand 2.48 3.60 1.000 2.77 3.40 1.000 

 

 

closest neighbor. This estimate includes the VCE 

procedure used over land in the analysis. Predictor 19 

was selected first for all four equations (land/water, 

temperature/dewpoint) and provided the bulk of the 

total RV. 

 

a. Land equations 

 The means, standard deviations, and correlations 

with the predictand are given in Table 2 for 

temperature and dewpoint over land. Of these, with a 

0.1% cutoff for additional RV, three predictors were 

chosen in order of 19, 14, and 5 for temperature and 

19, 5, and 14 for dewpoint.
5
 For temperature, the total 

RV was 53.4% (about half the total variance) and the 

standard error was 2.46°F (1.37°C). For dewpoint, the 

                                                 
5
 Screening actually selected three more predictors for temper-

ature, but the coefficient was negative for the fourth one. The 

predictors were devised so that each one should logically 

contribute positively to the error estimate; a negative coefficient 

could easily give inconsistent results (e.g., a negative absolute 

error). Negative coefficients can be caused by near multicolinearity 

among predictors, which occurs along with extremely low 

additional reductions of variance as additional variables are added 

to the equation. 

total RV was less, 44.6%, and the standard error was 

2.53°F (1.41°C). 

 Both coefficients and the mean and range of the 

variable itself have to be considered in assessing the 

influence of a predictor on the error. From Table 3, we 

see that if all three predictors had a value of zero—not 

likely but not impossible—the estimated temperature 

error would be only 0.29°F (0.16°C); this is the lower 

limit for the temperature error estimate, and includes 

the interpolation error. If each predictor had its mean 

value, the error estimate would be 2.48°F (1.38°C). If 

in addition, each predictor differed from its mean by 

one standard deviation in a positive direction, the error 

would be another 2.91°F (1.62°C), for a total of 5.39°F 

(2.99°C). 

 For dewpoint (see Table 4), the minimum error 

estimate is 0.20°F (0.11°C), and the estimate if each 

predictor had its mean value is 2.77°F (1.54°C). In 

addition, if each predictor differed from its mean by 

one standard deviation in a positive direction, the error 

would be another 2.65°F (1.47°C), for a total of 5.42°F 

(3.01°C)—very nearly the same as for temperature. 

Both temperature and dewpoint equations have a 

terrain roughness term (14), a data variability term (5), 

and a term that embodies data density, roughness, and 
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Table 3. The constant and coefficients, means, and standard deviations for the three predictor variables in the temperature equation over 

land, together with the predictor contributions to the total estimate. Total reduction of variance (RV) for the 3-predictor equation is 53.4%. 

Units are °F (divide by 1.8 to get °C). 

Predictor No. 

(see Table 1) 

Coefficient 

(constant) 
Mean 

Contribution from 

mean and constant 
Std. Dev. 

Contribution from 

one std. dev. 

Constant 0.2913  0.291   

19 0.5891 2.974 1.752 4.364 2.571 

14 0.0026 54.234 0.141 72.595 0.189 

5 0.0755 3.966 0.299 1.980 0.149 

Sum   2.483  2.909 

 

Table 4. Same as Table 3 except for the 3-predictor dewpoint equation. Total RV = 44.6%.  

Predictor No. 

(see Table 1) 

Coefficient 

(constant) 
Mean 

Contribution from 

mean and constant 
Std. Dev. 

Contribution from 

one std. dev. 

Constant 0.2009  0.201   

19 0.5048 3.363 1.698 4.229 2.135 

5 0.2033 3.814 0.775 1.859 0.378 

14 0.0019 52.539 0.100 70.090 0.133 

Sum   2.774  2.646 

 

data variability (19). The only difference is that the 

order of selection for predictors 5 and 14 was reversed. 

 The correlations in Table 2 indicate the error is 

more linearly related to data variability for dewpoint 

than for temperature (predictors 3–12). Also, it does 

not matter much over what area the variability is 

calculated. Temperature and dewpoint are about 

equally related to roughness (predictors 13–16), 

mattering little over what area they are calculated. 

Predictor 19, being by far the best, indicates the 

importance of the VCE in the analysis process. It also 

may indicate that if a better VCE process could be 

found, the error would decrease and therefore the 

analysis would be better—an obvious conclusion from 

logic alone. 

 

b. Water equations 

 Table 5 is similar to Table 2, and Tables 6 and 7 

are similar to Tables 3 and 4, respectively, except they 

are for over water. There were only two predictors 

retained for temperature over water (19 and 3), and 

three for dewpoint (19, 2, and 5).  

 Tables 6 and 7 show that the minimum 

temperature and dewpoint error estimates are 

somewhat larger over water than over land, being 

0.65°F (0.36°C) and 0.75°F (0.42°C), respectively. 

The contribution to error from the constant and means 

of the temperature and dewpoint are 2.29°F (1.27°C) 

and 3.58°F (1.99°C), respectively. If each predictor is 

different from the mean by one standard deviation in a 

positive direction, the total error is 4.17°F (2.32°C) 

and 6.60°F (3.67°C), for temperature and dewpoint, 

respectively. Data over water are much more sparse 

than over land, but the spatial variability is less.
6
 

 

7. Implementation 

 The equations were developed for stations–points 

where we had data. To implement the equations, we 

could compute the estimated error for a particular time 

at each station where there are data. For instance, for 

the temperature/land equation we could (i) compute 

the absolute difference between the station’s value and 

the value estimated by the closest station, taking into 

account the VCE (predictor 19), (ii) compute the 

roughness (predictor 14), and (iii) compute the data 

variability (predictor 5). These values can be used with 

the equation constant and coefficients to compute the 

error. However, this does not give values on a grid, 

which is what we really want. We could analyze these 

values with the BCDG analysis method, but that would 

give questionable error values in the same areas where 

we had a questionable analysis. This does not seem to 

be an acceptable solution. 

 Alternatively, we can, with some reasonable 

assumptions, apply the appropriate equations at grid 

points. We do it in the following manner. Predictor 19 

is calculated by finding the absolute value of the 

difference of the analysis value at a grid point and the 

value for that grid point estimated by the closest 

                                                 
6
 As with temperature over land, more predictors were selected, 

but the next one selected had a negative coefficient. 
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Table 5. Similar to Table 2 but for over water. Predictors involving the VCE and terrain roughness (7, 8, and 13–18) do not exist over 

water because the elevation does not vary. 

Predictor No. 

(see Table 1) 

Temperature Dewpoint 

Mean Std. Dev. Correlation Mean Std. Dev. Correlation 

1 27.00 16.99 0.042 32.38 27.78 0.050 

2 38.61 21.44 0.003 54.43 39.86 0.065 

3 3.73 1.77 0.218 3.73 2.15 0.143 

4 3.44 1.71 0.217 3.54 2.14 0.184 

5 3.14 1.71 0.203 3.30 2.39 0.216 

6 2.76 1.77 0.191 2.88 2.22 0.170 

9 1.73 0.92 0.177 1.76 1.14 0.148 

10 1.55 0.90 0.178 1.59 1.08 0.160 

11 1.35 0.87 0.176 1.45 1.26 0.184 

12 1.19 0.89 0.172 1.30 1.27 0.187 

19 2.98 4.96 0.518 4.00 4.59 0.701 

Predictand 2.29 3.13 1.000 3.58 3.79 1.000 

 

Table 6. The constant and coefficients, means, and standard deviations for the two predictor variables in the temperature equation over 

water, together with the predictor contributions to the total estimate. Total RV for the 2-predictor equation is 27.9%. Units are °F (divide by 

1.8 to get °C). 

Predictor No. 

(see Table 1) 

Coefficient 

(constant) 
Mean 

Contribution from 

mean and constant 
Std. Dev. 

Contribution from 

one std. dev. 

Constant 0.6466  0.647   

19 0.3121 2.983 0.931 4.956 1.547 

3 0.1898 3.729 0.708 1.773 0.337 

Sum   2.286  1.884 

 

Table 7. Same as Table 6, except for the 3-predictor dewpoint equation. Total RV = 49.7%.  

Predictor No. 

(see Table 1) 

Coefficient 

(constant) 
Mean 

Contribution from 

mean and constant 
Std. Dev. 

Contribution from 

one std. dev. 

Constant 0.7492  0.749   

19 0.5685 4.003 2.276 4.587 2.608 

2 0.0059 54.429 0.321 39.862 0.235 

5 0.0718 3.296 0.237 2.392 0.172 

Sum   3.583  3.015 

 
station, taking into account the VCE at the station. The 
roughness (predictor 14) can be calculated at each grid 
point. Also, the data density at the grid point can be 
calculated in the same manner it was calculated at 
stations in the development process. 
 Is implementation at grid points substantially 
different from implementation at stations? The data 
density calculation should not suffer. The number of 
stations within the specified radius will vary whether 
the calculation is at stations or at grid points. In 
development of the equations, whether the density was 
computed at stations or at the closest grid point for a 
station on a 2.5-km grid, it would not vary much; thus, 
the station itself is not entering into the calculation. 
The roughness calculation is done at grid points in the 
development stage, so there is no difference there. The 

major difference is for predictor 19; in the develop-
ment stage the value at the station was known 
(observed), but during implementation the value is the 
analysis value. 
 The fact that predictor 19 is calculated at grid 

points during implementation and at stations in 

development may cause a low bias in the estimates for 

grid points. Because the density of grid points in our 

application is greater than the density of stations, the 

distance between a station and its closest neighbor will 

be, in general, greater than the distance between a grid 

point and its closest station. This may tend to 

underestimate the value of predictor 19, and thus the 

errors at grid points compared to errors calculated at 

stations. 
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 Temperature and dewpoint analyses made with 

BCDG are shown in Figs. 1 and 3 and the 

corresponding error maps in Figs. 2 and 4 for 0000 

UTC 23 November 2010. The number of temperature 

(dewpoint) observations used was 11 896 (10 295). 

The surface map for the same date taken from NCEP’s 

Hydrometeorological Prediction Center archives is 

shown in Fig. 5. A dominant feature is a low-pressure 

center near the western Great Lakes, with a strong cold 

front trailing down through Illinois, Missouri, 

Oklahoma, and into Texas. Another low-pressure 

system is moving into the Seattle, Washington, area. A 

weak low pressure exists in western Oklahoma and 

Kansas along with an associated strong moisture 

gradient. 

 

 
Figure 1. BCDG analysis of temperature (°F) valid at 0000 UTC 

23 November 2010. Click image for an external version; this 

applies to all figures hereafter. 

 

 
Figure 2. Error estimation (°F) of the BCDG temperature analysis 

valid at 0000 UTC 23 November 2010. 

 

 The dominant large-scale feature is the cold front 

in the central part of the country [note that the color 

scale is not the same on the temperature and dewpoint 

analyses, one being shifted 20°F (11.1°C) to the 

other]. The error maps show that while the areas well 

ahead and behind the front have small estimated 

errors—generally less than 2°F (1.1°C) for both 

temperature and dewpoint—the frontal area stands out 

with values at individual grid points being in question 

by as much as 8°F (4.4°C) or so for dewpoint. The 

front is in an area with minimal terrain differences, so 

the larger estimated errors for dewpoint (relative to 

temperature) are due to the variability of the 

observations, and to a much lesser extent the dewpoint 

values being slightly less dense. 

 

 
Figure 3. Same as Fig. 1 except for dewpoint. 

 

 
Figure 4. Same as Fig. 2 except for dewpoint. 

 

 The irregular streak of relatively higher estimated 

temperature errors running from northwestern 

Wyoming to eastern Wyoming is along the frontal 

boundary shown in Fig. 5. A more irregular pattern is 

also shown in the dewpoint estimated errors. 

 The California Central Valley is noticeable 

especially on the temperature map, and the Snake 

http://www.nwas.org/jom/articles/2013/2013-JOM11-figs/Fig_1.png
http://www.nwas.org/jom/articles/2013/2013-JOM11-figs/Fig_2.png
http://www.nwas.org/jom/articles/2013/2013-JOM11-figs/Fig_3.png
http://www.nwas.org/jom/articles/2013/2013-JOM11-figs/Fig_4.png
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Figure 5. Surface weather map valid at 0000 UTC 23 November 

2010 (available online at www.hpc.ncep.noaa.gov/html/sfc_arch 

ive.shtml#CONUS). 

 

River Valley stands out, especially on the dewpoint 

analysis; being rather broad features with adequate 

observations, the estimated errors are small. The Sierra 

Nevada Mountains near the border of California and 

Nevada indicate cold and dry conditions, and because 

of a scarcity of observations as well as large variations 

in elevation, the errors are variable and larger than in 

surrounding areas. Small-scale features can be noted in 

the analyses, such as Death Valley in southern 

California (warm and dry) and the Grand Canyon in 

northwestern Arizona (warm in the temperature 

analysis). 

 The largest temperature errors for these analyses 

are in mountainous regions, as expected. Dewpoint 

errors are generally larger than temperature errors 

because of somewhat less dense and more variable 

dewpoint values, especially in mountainous areas. 

 For a closer look, we will concentrate on (i) an 

area in west-central Illinois where the estimated errors 

are larger than for other areas in the vicinity along the 

front, (ii) another area along the front in Oklahoma, 

where the estimated dewpoint errors are higher than 

surrounding areas, and (iii) an area in southern Ohio 

where the dewpoint analysis shows an area with lower 

values relative to the immediate surrounding area. 

 Figures 6a and 6b show the temperature and 

dewpoint analyses, respectively, for an area in Illinois 

just east of the Illinois-Iowa-Missouri triple point. The 

area of higher estimated error is a narrow southwest–

northeast oriented band along the northern portion of 

the front shown in Figs. 2 and 4. This is an area of 

relatively sparse data and where the gradient is tight as 

shown in the figures. There is a 10–20°F (5.6–11.1°C) 

difference in both temperature and dewpoint 

observations across the front, so it is reasonable that 

the exact analysis in this small, relatively data-sparse 

area would be more questionable than in surrounding 

areas. 

 Figures 7a and 7b show the dewpoint analysis and 

its estimated error over southern Oklahoma. Here, the 

observations are not sparse, but the difference of two 

values across the boundary is as much as 28°F 

(15.6°C), so there is a narrow zone of uncertainty. 

 Figures 8a and 8b show an area in south-central 

Ohio where the dewpoint analysis has a couple of 

 
 

 

 
Figure 6. Temperature (A) and dewpoint (B) analyses in west-central IL valid at 0000 UTC 23 November 2010. 

http://www.hpc.ncep.noaa.gov/html/sfc_archive.shtml#CONUS
http://www.hpc.ncep.noaa.gov/html/sfc_archive.shtml#CONUS
http://www.nwas.org/jom/articles/2013/2013-JOM11-figs/Fig_5.png
http://www.nwas.org/jom/articles/2013/2013-JOM11-figs/Fig_6.png
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Figure 7. Dewpoint analysis (A) and its estimated error (B) in southern OK valid at 0000 UTC 23 November 2010. 

 

 
Figure 8. Dewpoint analysis (A) and its estimated error (B) in southern OH valid at 0000 UTC 23 November 2010. 

 

spots with lower values than the surrounding area. 

Two stations with values of 37°F (2.8°C) and 39°F 

(3.9°C) are in the midst of values in the high 40s °F 

(~9°C) and low 50s °F (~11°C). They are not extreme 

enough to be discarded by the analysis process and 

show up in the analysis, but are not prominent. The 

error analysis suggests a closer look at these two 

values. Persistent spots in the error maps can indicate 

station reporting problems. In this case, the spot in the 

analysis is closely associated with twin spots in the 

error grid. On the other hand, the dominant spot in 

western Oklahoma with high dewpoints (Fig. 3) is not 

closely associated with a specific spot on the error map 

(Fig. 4) because the clustered observations there 

support each other. That is, a “spot” in an analysis is 

not necessarily associated with an area of higher 

uncertainty. Figure 8b also shows another less 

noticeable spot associated with the station observation 

of 53°F (11.7°C), which is a few degrees higher than 

surrounding values, and just to the east of the other 

two spots. While some meteorologists may consider 

such spots as blemishes on a national map and would 

prefer they be smoothed out, differences of this order 

can and do occur owing to mesoscale conditions such 

http://www.nwas.org/jom/articles/2013/2013-JOM11-figs/Fig_7.png
http://www.nwas.org/jom/articles/2013/2013-JOM11-figs/Fig_8.png
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as clouds, rain, etc. We have tried to be true to the 

observations so that forecasters at individual weather 

forecast offices can see the fine-scale detail that may 

be indicative of weather features that suggest careful 

scrutiny. 

 Hourly analyses of temperature and dewpoint and 

the associated errors are in the National Digital 

Guidance Database
7
 as part of the LAMP suite of 

forecasts (see Ghirardelli and Glahn 2010, 2011) about 

45 min after each hour. Such analyses can be 

considered to be 0-h forecasts and compared to the 

LAMP 1-h forecasts for continuity. Areas of small 

analysis error should indicate where the consistency 

from analysis to forecast should be relatively good. 

However, because a station value not only affects the 

analysis but also contributes substantially to a 1-h 

forecast, both the analysis and forecast may exhibit 

error in the area indicated by the error map. 

 

8. Discussion and conclusions 

 A method to estimate the errors associated with 

the analysis of temperature and dewpoint has been 

developed and demonstrated with the BCDG analysis 

method. It should be recognized that any estimate of 

analysis error is just that—an estimate. The truth 

cannot be known (the values of the element being dealt 

with at each grid point) unless some dataset is 

fabricated at both grid points (ground truth) and quasi-

random points (data to analyze) with an analytic 

function. This fabrication route has been taken in 

analysis studies (e.g., Goodin et al. 1979; Smith and 

Leslie 1984), but it is difficult to devise an analytic 

function that simulates (i) the real world with elevation 

differences, (ii) data with unknown errors, and (iii) 

data densities that are variable and reasonable. Also, 

this does not address the real world, day-to-day 

synoptic situations. 

 This method, which we call BCDGE (BCDG 

error), furnishes an estimate of error that is physically 

reasonable, is specific to the dataset being analyzed, 

and is relatively easy to implement. To emphasize a 

previous point, the error used in the development 

included the interpolation error (i.e., the estimate of 

the station value from the regularly spaced grid). This 

itself can be a considerable cause of error, especially 

in the western CONUS. It is also recognized that the 

development can be carried out only for the elevations 

                                                 
7
 The National Digital Guidance Database is the guidance 

counterpart of the NDFD, and can be accessed by the same 

methods as the NDFD. 

where there are stations. For higher elevations, the 

estimated errors are essentially extrapolations from 

stations at lower elevations with similar terrain 

roughness and data density. This also is true of the 

analysis; the true values at high elevations are not 

known. While the error estimation method presented 

here was applied to the BCDG analysis method, it is 

general and could be applied to any analysis method. 

 The error maps look reasonable in terms of 

pattern, and also in terms of absolute value, although 

there is no way to know how close the estimates really 

are at grid points. De Pondeca et al. (2011) presented 

an example error map from the RTMA in their Fig. 8. 

It shows similar characteristics to our error maps, 

inasmuch as the smaller errors are close to observation 

points, and the errors are greater between observation 

points. The magnitudes of the errors presented for the 

RTMA example and the BCDG example are about the 

same. The patterns in the BCDGE maps help pinpoint 

where the problems are with the associated analyses; 

the actual values are not as important in this respect as 

the spatial variability. For instance, the analysis of 

dewpoint does not by itself indicate a potential 

problem in Ohio (Fig. 8a), but the error-map pattern 

calls attention to it (Fig. 8b). 

 The detailed pattern or errors, which are not 

obvious at the scale shown in Figs. 2 and 4, are more 

“choppy” than desired. This is due to the discrete 

nature of some of the predictors. For instance, 

predictors 2 and 19, which include a contribution from 

the closest or second closest station, can switch 

abruptly from grid point to grid point because the 

closest station to the grid point switches abruptly. The 

result is a boundary about halfway between two 

stations. If different predictors that have a less discrete 

nature could be derived, the error estimates would not 

switch so abruptly. Because of this discrete nature, the 

analysis errors should be viewed as highlighting an 

area of possible error rather than focusing on 

individual gridpoint values. 

 This method for determining error also is 

applicable to wind speed, possibly with some 

adaptation. However, the high variability of some 

variables, like ceiling height and visibility, make 

application of this method—or actually any method—

questionable for these variables. 
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APPENDIX A 

 

The VCE Method 

 

 The vertical change with elevation (VCE), sometimes 

called the lapse rate, plays a major role in how a datum 

affects a grid point. Consider station A with a specific 

temperature value TA at elevation EA, and another station B 

a short distance away with a temperature value TB at 

elevation EB. To apply a correction based on station A to a 

grid point near station B, one needs to consider that the 

correction should be based on the VCE, defined as: 

 

     
       

       
. (1) 

 

 The VCE is computed for each station for each analysis. 

The specific value for a station is based on several stations 

(Bi) that are close in horizontal distance and far apart in 

vertical distance, with the more stations the better. Thus, 

 

        ∑        ∑        ⁄  (2) 

 

is the VCE summed over all designated close stations, Bi. 

This process is quite robust, computing only one statistic 

from several pieces of data. It is important to find a list of 

stations that are close in horizontal distance but far apart in 

vertical distance. A preprocessor finds such lists of stations 

by making several passes over the vertical and horizontal 

station locations, searching for the desired combinations. 

 In the analysis, the modifications to grid points from the 

stations within the radii of influence use not only the 

observation, but also the individual VCEs. 

 
 

APPENDIX B 

 

Method of Selection of Withheld Points 

 

 In order that the regression equations relating error to 

predictor variables represent the map equally and not be 

based on, for instance, data density, a latitude and longitude 

within the confines of the grid were each selected randomly. 

Their combination defined a point on the analysis grid. To 

be used, the point was required to be within the NDFD 

domain. The station closest to the point was selected to be 

withheld. Canadian stations were not used. 

 One disadvantage of this selection method is that, while 

regions of the country are represented approximately 

equally, a value in sparse data areas might be selected to 

contribute to the computation much more than one in a 

dense data area. It is not possible to weight each geographic 

region and each datum equally. It was thought that using a 

datum more often than others would not invalidate the 

results, unless the observation had unusual error 

characteristics. 

 Note that this selection process is in distinction to 

randomly selecting from the station list. If that were done, 

the areas of dense data would be weighted too heavily and 

create a bias toward areas of high-density observations. 

 The seed for the pseudo random-number generator can 

be the same in each checkout run to get consistent results. 

However, it must be different in actual withholding runs, or 

the same stations will be withheld on each run. Rather, the 

seed can be based on the system clock to get different 

withheld stations. 
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